[發明專利]基于五柵式應變花消除殘余應力測試鉆孔偏心誤差的方法有效
| 申請號: | 202010986239.6 | 申請日: | 2020-09-18 |
| 公開(公告)號: | CN112113695B | 公開(公告)日: | 2021-10-15 |
| 發明(設計)人: | 顧穎;任松波;古松;孔超;楊莉瓊;陳俞嘉;周載延;馮倩 | 申請(專利權)人: | 西南科技大學 |
| 主分類號: | G01L5/00 | 分類號: | G01L5/00 |
| 代理公司: | 成都正華專利代理事務所(普通合伙) 51229 | 代理人: | 李蕊 |
| 地址: | 621010 四川*** | 國省代碼: | 四川;51 |
| 權利要求書: | 查看更多 | 說明書: | 查看更多 |
| 摘要: | |||
| 搜索關鍵詞: | 基于 五柵式 應變 花消 殘余 應力 測試 鉆孔 偏心 誤差 方法 | ||
1.一種基于五柵式應變花消除殘余應力測試鉆孔偏心誤差的方法,其特征在于,包括:
S1、根據鉆孔應變法,設計五柵式殘余應力測試應變花,包括:
在鉆孔外圍圓環設置5個敏感柵,將5個敏感柵按順時針編號為1#、2#、3#、4#及5#,且5個敏感柵分別位于0°、45°、90°、180°、270°對應的圓周上,P1~P5分別為5個敏感柵的中心,O為鉆孔圓心,a為孔徑,R代表敏感柵中心P1~P5至鉆孔圓心O的距離;
S2、基于線彈性力學疊加原理,推導得到五柵式應變花測試的應變求解應力狀態與鉆孔偏心量的非線性方程組;
S3、基于牛頓迭代法求解非線性方程組,計算得到應力狀態和鉆孔偏心量;
S2中基于疊加原理,得到在雙向荷載σx與σy作用下鉆孔所釋放的應變,包括:
S2.1、設存在均值線彈性材料的薄板,則在均布荷載σx作用下,任意一點P(R,θ)應力狀態在極坐標系下為:
其中,R為點P距離鉆孔圓心的距離,θ為轉角,σ′r為P點鉆孔前的徑向應力,σ′θ為P點鉆孔前的周向應力,τ′rθ為P鉆孔前的剪應力;
S2.2、現以O為圓心鉆一半徑為a的圓孔,并假設開孔前后材料均處于線彈性范圍,則鉆孔后P點的應力狀態為:
其中,σ″r為P點鉆孔后的徑向應力,σ″θ為P點鉆孔后的周向應力,τ″rθ為P點鉆孔后剪切應力;
S2.3、在P點,由鉆孔而導致的應力變化為:
其中,Δσr為P點由鉆孔而導致的徑向應力變化量,Δσθ為P點由鉆孔而導致的周向應力變化量,Δτrθ為點P由鉆孔而導致的剪切應力變化量;
S2.4、設由鉆孔而釋放的徑向應變、環向應變及剪應變分別為根據胡克定律,開孔引起的應力變化可表示為:
其中,E為彈性模量,μ為泊松系數,G為剪切彈性模量,G=E/2(1+μ);
S2.5、將式(4)代入式(3)得:
S2.6、令則式(5)簡化為:
S2.7、根據疊加原理求出P(R,θ)點在σy作用下的釋放應變:
S2.8、將式(6)與式(7)相加,得到在雙向荷載σx與σy作用下鉆孔所釋放的應變:
其中,εr為鉆孔釋放的徑向應變,εθ為鉆孔釋放的周向應變,γrθ為鉆孔釋放的剪切應變;
所述S3中基于牛頓迭代法,并根據測試應變,求解應力狀態和偏心量,包括:
S3.1、根據設計的五柵式殘余應力測試應變花構建坐標系OXY,其中O為未偏心時的孔心,Y軸沿1#敏感柵布置,X軸與3#敏感柵重疊;O離各敏感柵中心P1~P5的距離均為R;O'為鉆孔出現偏心時的孔心,設O'的坐標為(x,y);定義O'離i號敏感柵中心Pi的距離為Ri,則Ri可表示為:
S3.2、定義向量與向量的夾角為βi,并定義βi以以順時針轉向為正,反之為負,則βi表示為:
其中,sgn(n)表示符號函數,根據n的符號取值:
θi表示從σy應力軸到向量的轉角:
S3.3、將式(12)代入式(8)得到鉆孔偏心情況下各應變片中心Pi的應變狀態:
其中,分別是以O'為極心的極坐標系下Pi點的徑向應變、軸向應變與剪切應變;
S3.4、根據應力分量的坐標轉換,表示為及的形式;
其中,σr為徑向應力,σθ為周向應力,τrθ為剪切應力;
根據胡克定律,在直角坐標系與極坐標下的應變分量與應力分量有關系式:
其中,τxy為剪切應力,γxy為剪切應變;
將式(15)代入式(14),聯合求解得到以εr、εθ及γrθ表示的εx形式:
S3.5、改寫式(16)得到與敏感柵讀數對應的應變:
S3.6、假設i號敏感柵實測的應變為εi,則與εi兩者的差值就可表示為σx、σy、θ、x及y的函數,定義代入式(17),得:
S3.7、將式(18)采用鏈式法則展開,根據牛頓迭代法求解未知量;為求解式(18)所示方程組,定義F(X)=[f1 f2 f3 f4 f5]T,X=[σx σy θ x y]T,F(X)對各未知數的偏導數表示為:
原非線性方程組F(X)=0,根據牛頓迭代法,通過迭代求得近似解:
X(k+1)=X(k)-[F′(X(k))]-1F(X(k)) (20)
其中,X(k)為方程組的k組近似值,當k=0時,X(0)表示迭代初始值,若假設則得到迭代初始值:
S3.8、給定精度水平ε和最大迭代次數N,對于k=0,1,2,…,N,按式(20)求解鉆孔偏心下殘余應力。
2.根據權利要求1所述的基于五柵式應變花消除殘余應力測試鉆孔偏心誤差的方法,其特征在于,所述S3.8中給定精度水平ε和最大迭代次數N,對于k=0,1,2,…,N,按式(20)求解鉆孔偏心下殘余應力,包括:
S3.8.1、將X(k)代入式(18)、式(19)分別求得F(X(k))、F′(X(k));
S3.8.2、將X(k)、F(X(k))及F′(X(k))代入式(20)求解X(k+1);
S3.8.3、判斷是否小于精度水平ε,若小于,X(k)≈X*,X*為真實解,迭代終止;
否則k=k+1,轉入S3.8.1、進行下一次迭代,直至k=N或計算結果滿足精度要求。
該專利技術資料僅供研究查看技術是否侵權等信息,商用須獲得專利權人授權。該專利全部權利屬于西南科技大學,未經西南科技大學許可,擅自商用是侵權行為。如果您想購買此專利、獲得商業授權和技術合作,請聯系【客服】
本文鏈接:http://www.szxzyx.cn/pat/books/202010986239.6/1.html,轉載請聲明來源鉆瓜專利網。





