[發明專利]一種基于最小模塊的三值光學處理器MSD乘法計算方法有效
| 申請號: | 201811223512.9 | 申請日: | 2018-10-19 |
| 公開(公告)號: | CN109388372B | 公開(公告)日: | 2023-04-07 |
| 發明(設計)人: | 宋凱;陳功;張意;靳青青 | 申請(專利權)人: | 華東交通大學 |
| 主分類號: | G06F7/498 | 分類號: | G06F7/498 |
| 代理公司: | 北京清亦華知識產權代理事務所(普通合伙) 11201 | 代理人: | 何世磊 |
| 地址: | 330013*** | 國省代碼: | 江西;36 |
| 權利要求書: | 查看更多 | 說明書: | 查看更多 |
| 摘要: | |||
| 搜索關鍵詞: | 一種 基于 最小 模塊 光學 處理器 msd 乘法 計算方法 | ||
1.一種基于最小模塊的三值光學處理器MSD乘法計算方法,其特征在于,MSD表示冗余計數法,假設最小模塊中的乘數A=x3?x2?x1?x0,被乘數B=y3?y2?y1y0,該方法包括以下步驟:
步驟1,數據預處理,預處理操作由TOC任務管理軟件完成,將可運算的數據直接送入乘法器中運算,由B的每一位y3,y2,y1,y0生成一個四位的輔助數據Bj=yj?yj?yj?yj,j為整數,0≤j≤3,得到四個新數據B0,B1,B2,B3;
步驟2,將乘數A=x3?x2?x1?x0拷貝4份分別送入最小模塊光路中的四個M運算器中,同時將被乘數的B0,B1,B2,B3也分別送入最小模塊光路中的四個M運算器中與A進行M變換,得到部分積P0,P1,P2,P3;
步驟3,將部分積P1向左移動1位,P2向左移動2位,P3向左移動3位,P0不移動,移動完成后就得到和數項S0,S1,S2,S3;
步驟4,將和數項S0,S1,S2,S3送入最小模塊光路中的七位一步式加法器、九位一步式加法器中累加,得到本最小模塊的結果,即為Fmin;
在步驟4中,先將和數項S1,S0送入最小模塊光路中的七位一步式加法器,S3,S2送入九位一步式加法器得出計算中間結果F′0,F′1,然后再將F′0前面補4個0即為F0,F′1前面補2個0即為F1,最后將結果作為輸入送到十一位一步式MSD加法器進行計算,輸出結果就是Fmin,即本最小模塊的最終結果;S3,S2,S1,S0四個和數項是通過并行計算同時產生的但位數不同,在累加時送入不同位數的一步式MSD加法器中。
2.根據權利要求1所述的基于最小模塊的三值光學處理器MSD乘法計算方法,其特征在于,在步驟3中,對部分積進行補0操作來計算和數項。
3.根據權利要求2所述的基于最小模塊的三值光學處理器MSD乘法計算方法,其特征在于,所述補0操作通過在部分積Pi的高位、或低位增加無光態數據位實現,i為整數,0≤i≤3。
該專利技術資料僅供研究查看技術是否侵權等信息,商用須獲得專利權人授權。該專利全部權利屬于華東交通大學,未經華東交通大學許可,擅自商用是侵權行為。如果您想購買此專利、獲得商業授權和技術合作,請聯系【客服】
本文鏈接:http://www.szxzyx.cn/pat/books/201811223512.9/1.html,轉載請聲明來源鉆瓜專利網。





