[發明專利]針對離散系統多執行器失效故障的主動容錯預測控制方法在審
| 申請號: | 201811117986.5 | 申請日: | 2018-09-19 |
| 公開(公告)號: | CN109085757A | 公開(公告)日: | 2018-12-25 |
| 發明(設計)人: | 楊蒲;疏琪堡;王玉霞 | 申請(專利權)人: | 南京航空航天大學 |
| 主分類號: | G05B13/04 | 分類號: | G05B13/04 |
| 代理公司: | 暫無信息 | 代理人: | 暫無信息 |
| 地址: | 211106 江蘇省南京市江寧區將*** | 國省代碼: | 江蘇;32 |
| 權利要求書: | 查看更多 | 說明書: | 查看更多 |
| 摘要: | |||
| 搜索關鍵詞: | 失效故障 主動容錯 多執行器 預測控制 離散系統 模型預測控制 離散滑模 失效因子 觀測器 控制律 二階 離散控制系統 滑模觀測器 預測控制器 被控系統 補償預測 故障模型 控制系統 容錯能力 算法設計 在線優化 狀態模型 積分器 階躍型 嵌入式 檢測 | ||
1.針對離散系統多執行器失效故障的主動容錯預測控制方法,其特征在于:根據被控對象的狀態模型,同時考慮到階躍型干擾和偏置故障,設計加入嵌入式積分器的增廣狀態模型,以此設計了預測控制律,加強系統的魯棒性;在被控對象存在多個執行器失效故障時,根據系統的狀態信息和故障模型,設計二階離散滑模觀測器,能夠快速準確估計出失效因子;失效因子補償校正預測控制律,最終構成主動容錯控制器,使得被控對象在發生多執行器失效故障后能夠繼續穩定運行,包括如下具體步驟:
步驟1)考慮具有一般性的系統離散模型,如式(1)所示:
其中,x0(k)∈Rn為系統的狀態變量,u(k)∈Rp為系統的控制輸入,y(k)∈Rq為系統輸出,A0、B0和C0為對應的系數矩陣,d(k)=ΔAx0(k)+ΔBu0(k)+ω(k)表示系統參數不確定性和外部干擾的總和,ΔA和ΔB為系統參數不確定性,ω(k)為外部干擾,并且d(k)是有界的滿足dmin≤d(k)≤dmax和|dt(k)-dt(k-1)|≤δt,t=1,2,…,n,dmin和dmax表示d(k)的上下界,δ(k)為常數矩陣,dt(k)和δt(k)分別為矩陣d(k)和δ(k)的子元素;
步驟2)設計增廣狀態模型:
步驟2.1)將式(1)的兩邊進行差分運算得到式(2):
其中,Δx0(k+1)=x0(k+1)-x0(k),Δu(k)=u(k)-u(k-1),Δd(k)=d(k)-d(k-1);
步驟2.2)定義新的狀態變量x(k)=[Δx0(k)T y(k)T]T,可以得到加入嵌入式積分器的增廣狀態模型(3):
其中,C=[0qn Iq],Iq為q階的單位矩陣,In為n階的單位矩陣,0qn為q×n的零矩陣;
步驟3)預測模型設計:
步驟3.1)根據模型(3)可以得到k+NP時刻的預測狀態:
其中,NP為預測時域,NC為控制時域,且滿足NP≥NC;
步驟3.2)由式(4)可得預測輸出Y(k):
Y(k)=Kx(k)+GΔU(k)+HΔD(k) (5)
其中,Y(k)=[y(k+1|k),y(k+2|k),…,y(k+NP|k)]T,ΔU(k)=[Δu(k),Δu(k+1),…,Δu(k+NC-1)]T,ΔD(k)=[Δd(k),Δd(k+1),…,Δd(k+NP-1)]T,
步驟4)反饋校正設計:
步驟4.1)計算k時刻的預測誤差式(6):
ep(k)=y(k)-y(k|k-NP) (6)
其中,y(k)為k時刻預測模型的實際輸出,y(k|k-NP)為k-NP時刻對k時刻的預測輸出,滿足式(7):
步驟4.2)加入校正,預測輸出為:
YP(k)=Y(k)+TPEP(k) (8)
其中,EP(k)=[y(k)-y(k|k-1),y(k)-y(k|k-2),…,y(k)-y(k|k-NP)]T,YP(k)=[yP(k+1),yP(k+2),…,yP(k+NP)]T,tP為校正系數,取值為t1=1,1>t2>t3>…>tP>0;
步驟5)滾動優化:
步驟5.1)設計k時刻的優化性能指標j(k)為式(9),及j(k)的向量形式為式(10);
J=(Yr-YP)TQ(Yr-YP)+ΔUTRΔU (10)
其中,yr為期望輸出,qj和rl為非負實數,qj表示預測輸出跟蹤誤差的加權系數,rl表示輸入的權重系數,Yr(k)=[yr(k+1),yr(k+2),…,yr(k+NP)]T,Q和R分別為由qj和rl構成的對角矩陣;
步驟5.2)運算可得最優輸出:
ΔU(k)=(GTQG+R)-1GTQ(Yr(k)-Kx(k)-HΔD(k)-YPEP(k)) (11)
步驟5.3)根據式(11)得到k時刻的預測控制律:
u(k)=u(k-1)+Δu(k) (12)
其中,u(k-1)為k-1時刻系統的實際輸入,Δu(k)=[I 0 … 0]ΔU(k);
步驟6)設計觀測模型:
步驟6.1)確定故障模型,令um(k)表示第m個執行器的控制輸入信號,被控對象有p個執行器,m=1,2,…p,則發生失效故障的執行器的控制輸入為:
其中γm∈[-1,0]為失效因子;γm=0表示第m個執行器正常工作;γm=-1表示第m個執行器完全失效,無法工作;
步驟6.2)當多執行器發生失效故障時,系統狀態模型式(1)可表達為式(14),并定義新的狀態變量z(k)=[x0(k) γ(k)]T,得到觀測模型式(15):
x0(k+1)=A0x0(k)+B0u(k)+F(k)γ(k)+d(k) (14)
其中,F(k)=B0U(k),
和Ip表示p階的單位矩陣,0pn表示p×n的零矩陣,0p表示p×p的零矩陣,0q表示q×q的零矩陣;
步驟7)根據式(15)設計二階離散滑模觀測器:
其中和分別為狀態量z(k)和輸出y(k)的估計量;Φ為常數,決定了邊界層;L∈R(n+p)×q為觀測器的增益向量;sat(·)為飽和函數,如式(17)所示,以及M∈R(n+p)×1為sat(·)的增益向量;
步驟8)故障發生時,觀測器檢測出失效因子,定義Bnew=B0(I+γ),用Bnew修正預測控制律式(12),實現對被控對象的主動容錯控制。
該專利技術資料僅供研究查看技術是否侵權等信息,商用須獲得專利權人授權。該專利全部權利屬于南京航空航天大學,未經南京航空航天大學許可,擅自商用是侵權行為。如果您想購買此專利、獲得商業授權和技術合作,請聯系【客服】
本文鏈接:http://www.szxzyx.cn/pat/books/201811117986.5/1.html,轉載請聲明來源鉆瓜專利網。





